FPP

Mapping the spatial proximity between people and forests: a new dataset to aid environment and development decision-making

How many people live in and around forests?

Variability in the definitions of forest dependence, and an absence of global datasets that measure dependence, mean that reliably calculating consistent and replicable estimates of the number of forest-dependent people is not viable. However, many definitions of ‘forest-dependent people’ also include criteria of a spatial relationship between people and forests, most often referring to rural people living in and around forests (Newton et al. 2016). This subset of ‘forest-proximate people’ typically derive direct livelihood benefits from forests, compared to those living in locations distant from forests, despite some notable exceptions. It is likely that this is the demographic most often targeted by agencies invested in poverty alleviation and/or sustainable socio-economic development within forested regions. Forest proximity is therefore often a necessary, although not sufficient, criterion for forest dependence. Proximity is also a measure that is quantifiable at global scale using publicly available global forest cover and population datasets at a relatively fine spatial resolution. We use remote sensing and census data to generate measures of forest proximity as a partial proxy for forest dependence.

We combined recent forest cover and human population density data to map the spatial relationship between people and forests on a global scale. We used 1km resolution global population density data (Bright et al., 2012) and 30m resolution global forest cover dataset version 1.0 (Hansen et al., 2013) to generate spatial overlays that identified population subsets living in or close to forests. We first created a global forest cover map by mosaicking the forest cover tiles from Hansen et al. (2013) into a global raster image using ArcGIS. We calculated baseline global forest cover in 2000 using Hansen et al.’s definition of stand replacement (50% tree cover threshold; Hansen et al., 2013), and used forest gain and forest loss datasets for the subsequent twelve years to generate a final forest cover estimate for the year 2012. We resampled the forest cover raster dataset from 30m to 1km resolution using the nearest neighbor function to match the resolution of the global population density dataset and to improve computing viability. We projected both datasets into the Mollweide equal-area projection (Usery and Seong, 2001) so that kilometers could be used for the buffer zone distance. We used a Euclidian distance measure to create a 5 kilometer buffer zone around each forest pixel. Using the Zonal Statistics tool, we then calculated the population living within that 5 kilometer buffer zone and summed the total for each country. We excluded urban areas from our analysis, defining them as areas with population densities equal or greater than 1500 people per km2 (Brezzi et al., 2012). Brezzi et al. (2012) also consider 1000 people per km2 as an alternative metric for urban areas; we chose the higher population density to generate the most liberal estimates of the number of forest proximate people.

We calculate that 1.61 billion rural people lived within 5km of a forest in 2012, globally.

We provide all country-specific estimates below, as well as maps that show forest proximate people for the 80 countries that make up 90% of (1) the worlds poor, (2) forest cover, and (3) global population.

CountryTropical/Non-tropicalWorld Bank Income CategoryTotal Population (2012)Number of Forest Proximate PeopleProportion of Population that are Forest ProximateCountry Map
AfghanistanNon-tropicalL303836328390200.027614210177374link
Akrotiri and DhekeliaNon-tropicalNA2309548170.20857328426066
AlandNon-tropicalH14465134280.92830971310059
AlbaniaNon-tropicalUM270120312426720.46004391376731
AlgeriaTropicalUM3677944952674410.14321696336451link
American SamoaTropicalUM5995000
AndorraNon-tropicalH67435207380.30752576555201
AngolaTropicalUM2118872381981450.38691076380582link
AnguillaTropicalNA16464146500.88982021379981
AntarcticaNon-tropicalNA000
Antigua and BarbudaTropicalH84448546020.64657540735127
ArgentinaNon-tropicalUM4262632984511730.1982618066876link
ArmeniaNon-tropicalLM27771774552420.16392257317413
ArubaTropicalH13577900
AustraliaTropicalH2198185486639890.39414277794767link
AustriaNon-tropicalH662131838428800.58037991831838
AzerbaijanNon-tropicalUM874109125442080.29106298058217
BahamasTropicalH3377371340970.3970456301797
BahrainNon-tropicalH133379900
BangladeshTropicalL178051959256305380.14394976693292link
BarbadosTropicalH32323500
BelarusNon-tropicalUM698802728071520.40170880850918
BelgiumNon-tropicalH793821951107490.64381557122574
BelizeTropicalUM3580482012850.56217322817052
BeninTropicalL112953269423040.083424241141867
BermudaTropicalH5643600
BhutanNon-tropicalLM7745425847310.75493775676464
BoliviaTropicalLM1184882925268090.21325390044873link
Bonaire, Saint Eustatius and SabaNon-tropicalNA2476096800.39095315024233
Bosnia and HerzegovinaNon-tropicalUM337503220549940.60888133801398
BotswanaTropicalUM23966805670.00023657726521688
Bouvet IslandNon-tropicalNA000
BrazilTropicalUM226976651546652390.24084080348864link
British Indian Ocean TerritoryTropicalNA000
British Virgin IslandsTropicalNA31398158300.50417224027008
BruneiTropicalH5012501923230.38368678304239
BulgariaNon-tropicalUM617129526193520.42444122343852
Burkina FasoTropicalL2046488200
BurundiTropicalL1266084429746070.23494539542546link
CambodiaTropicalL1759799450871090.2890732318695
CameroonTropicalLM2420517678627340.32483688612717link
CanadaNon-tropicalH27994682148088110.5289865768077link
Cape VerdeTropicalLM531675907780.17073964357925
Cayman IslandsTropicalH53122246080.46323557094989
Central African RepublicTropicalL614179235536170.57859611657314link
ChadTropicalL12994848256900.0019769373216216
ChileTropicalH1698838433579330.19766053086627link
ChinaTropicalUM13615988752717535780.19958416754714link
Christmas IslandTropicalNA140700
Clipperton IslandTropicalNA000
Cocos IslandsTropicalNA48700
ColombiaTropicalUM54066316159537910.29507819619151link
ComorosTropicalL7700761735310.22534269344844
Cook IslandsTropicalNA924700
Costa RicaTropicalUM545531518822900.3450378209141
Côte d'IvoireTropicalLM2636691591141110.34566467104703link
CroatiaNon-tropicalH379351621994230.5797848223126
CubaTropicalUM1220842349355460.4042738361867
CuraçaoNon-tropicalH158711432120.27226846280346
CyprusNon-tropicalH8000301185850.14822569153657
Czech RepublicNon-tropicalH793209047732460.60176397393373
Democratic Republic of the CongoTropicalL88915111446961590.50268349774652link
DenmarkNon-tropicalH371643726725630.71911968371857
DjiboutiTropicalLM84026900
DominicaTropicalUM72313489170.67646204693485
Dominican RepublicTropicalUM1148399731977450.27845226709829
East TimorTropicalLM13310989041480.67924976222637
EcuadorTropicalUM1821149261959490.34022193239302link
EgyptTropicalLM875048629242000.010561698845945link
El SalvadorTropicalLM704370824605430.34932495782051
Equatorial GuineaTropicalH7923124251080.53654116055291
EritreaTropicalL714408100
EstoniaNon-tropicalH8141914892030.60084550185399
EthiopiaTropicalL108474510214044230.19732214508275link
Falkland IslandsNon-tropicalNA2247160.0071206052514464
Faroe IslandsNon-tropicalH2510700
FijiTropicalUM9638595812230.60301662380078
FinlandNon-tropicalH298393822074220.73976805148096link
FranceNon-tropicalH51948075312452290.60147039134751link
French GuianaTropicalLM2541061131390.44524332365233
French PolynesiaNon-tropicalH23072200
French Southern TerritoriesNon-tropicalNA000
GabonTropicalUM19819797560760.38147528303781link
GambiaTropicalL2131467136730.0064148307245667
GeorgiaNon-tropicalLM412523020856060.50557326500583
GermanyNon-tropicalH61881520336443500.54368978008297link
GhanaTropicalLM2965406182592270.27851925576062link
GibraltarNon-tropicalNA2029126960.13286678823124
GreeceNon-tropicalH980717827305330.27842188649987
GreenlandNon-tropicalH1882400
GrenadaTropicalUM122128686670.56225435608542
GuadeloupeTropicalH4414011921650.43535243463427
GuamTropicalH19426000
GuatemalaTropicalLM1650276665858440.39907516109724
GuernseyNon-tropicalH52039193110.3710870693134
GuineaTropicalL1296554052295140.40333946754242
Guinea-BissauTropicalL18394705836900.31731422638042
GuyanaTropicalLM8474354010810.47328821679539link
HaitiTropicalL1116007942266000.37872491762827link
Heard Island and McDonald IslandsNon-tropicalNA000
HondurasTropicalLM965707841077190.42535837444825
Hong KongTropicalH72835621524390.020929182726803
HungaryNon-tropicalUM809933648390540.59746305129211
IcelandNon-tropicalH14878700
IndiaTropicalLM1337470228881410530.065901319636701link
IndonesiaTropicalLM2959999611027766720.34721853223487link
IranNon-tropicalUM7880930620955590.026590248111054link
IraqNon-tropicalUM31372023869340.0027710677121459link
IrelandNon-tropicalH337489420429670.6053425677962
Isle of ManNon-tropicalH55823301410.53993873493005
IsraelNon-tropicalH77970499055280.11613727193455
ItalyNon-tropicalH53547406211696390.39534387529435link
JamaicaTropicalUM328470711816600.35974593776553
JapanNon-tropicalH123536304233569660.1890696519462link
JerseyNon-tropicalH68858255750.37141653838334
JordanNon-tropicalUM6968771991530.014228190307875
KazakhstanNon-tropicalUM1426448219698160.13809236115269
KenyaTropicalL46345010120237920.25944091931364link
KiribatiTropicalLM6562700
KosovoNon-tropicalLM16530359149830.55351701567117
KuwaitNon-tropicalH288840500
KyrgyzstanNon-tropicalL48498169034110.18627737629634
LaosTropicalLM773437749842480.64442785760249link
LatviaNon-tropicalH14526687986060.54975121638255
LebanonNon-tropicalUM452804610205360.22538110257714
LesothoNon-tropicalLM1977216905880.045815935133036
LiberiaTropicalL466387728740980.616246526227link
LibyaTropicalUM5764987256600.0044510074350558
LiechtensteinNon-tropicalH29702212930.71688775166655
LithuaniaNon-tropicalH242708413101520.53980496760722
LuxembourgNon-tropicalH3958212686710.67876893848482
MacaoTropicalH53725347350.0088133523684372
MacedoniaNon-tropicalUM19450826353620.32665049596881
MadagascarTropicalL25064715113105700.45125468212984link
MalawiTropicalL1918292131791350.16572736758912link
MalaysiaTropicalUM34683798101331230.29215724875344link
MaldivesTropicalUM231979186310.080313304221503
MaliTropicalL1813296900
MaltaNon-tropicalH37387500
Marshall IslandsTropicalUM2768000
MartiniqueTropicalH4070882148170.5276918012813
MauritaniaTropicalLM378517000
MauritiusTropicalUM14662493243110.22118412356973
MayotteTropicalUM222350638490.28715538565325
MexicoTropicalUM129009400276534040.21435185343084link
MicronesiaNon-tropicalLM100224108580.10833732439336
MoldovaNon-tropicalLM302072217531150.58036290661637
MonacoNon-tropicalH62608540.13642172523962
MongoliaNon-tropicalLM25494991398280.054845285289384
MontenegroTropicalUM5859703116310.53182074167619
MontserratTropicalNA480247300.98500624739692
MoroccoNon-tropicalLM3235355531064700.096016341944494link
MozambiqueTropicalL26920089115958080.43074924455116link
MyanmarTropicalL62315232161105010.25853231197149link
NamibiaTropicalUM237207221640.00091228259513202
NauruTropicalNA642100
NepalNon-tropicalL32046109110149980.34372341428409link
NetherlandsNon-tropicalH1242041647992810.38640259714328
New CaledoniaTropicalH2727851640410.60135637956633
New ZealandNon-tropicalH392964120196670.51395712738136
NicaraguaTropicalLM665104431442950.47275209726473
NigerTropicalL1935056300
NigeriaTropicalLM202628323175279100.086502763979348link
NiueTropicalNA105700
Norfolk IslandNon-tropicalNA207000
North KoreaNon-tropicalL2255110255308680.24525932258211link
Northern CyprusNon-tropicalH315200652080.20687817258883
Northern Mariana IslandsNon-tropicalH5522800
NorwayNon-tropicalH266673020286630.76073055764926
OmanTropicalH335829800
PakistanNon-tropicalLM19811013579626320.040192956306854link
PalauNon-tropicalUM21484101000.47011729659281
PalestinaNon-tropicalLM4410136815200.018484690721556
PanamaTropicalUM416746115707280.37690286723739
Papua New GuineaTropicalLM737532448668990.65988951807405link
Paracel IslandsNon-tropicalNA000
ParaguayTropicalLM711275233558330.47180514658742link
PeruTropicalUM3491011963342810.18144541415055link
PhilippinesTropicalLM120512131348643620.28930168034287link
Pitcairn IslandsTropicalNA1400
PolandNon-tropicalH28647650167382400.5842796878627link
PortugalNon-tropicalH993573647812680.48121930775938
Puerto RicoTropicalH412732022520130.54563566672805
QatarNon-tropicalH212056500
Republic of CongoTropicalLM531213217434160.32819515780105link
ReunionTropicalH9037893192570.35324284761156
RomaniaNon-tropicalUM1842756596885900.52576615521367
RussiaNon-tropicalH101214934392295830.38758690491267link
RwandaTropicalL1421704847098020.33127847637569link
Saint HelenaTropicalNA191100
Saint Kitts and NevisTropicalH50823228370.44934380103496
Saint LuciaTropicalUM174294911990.52324807509151
Saint Pierre and MiquelonNon-tropicalNA399622540.56406406406406
Saint Vincent and the GrenadinesTropicalUM112240540670.48170883820385
Saint-BarthelemyTropicalNA518251480.99343882670783
Saint-MartinTropicalH36071154710.42890410579136
SamoaTropicalLM19929900
San MarinoNon-tropicalH25017153200.61238357916617
Sao Tome and PrincipeTropicalLM221334268760.12142734509836
Saudi ArabiaTropicalH2920550200
SenegalTropicalLM15164424317080.0020909465469971
SerbiaNon-tropicalUM630460635020280.55547134904227
SeychellesTropicalUM99676390.00039126770737188
Sierra LeoneTropicalL639655640641430.63536424913657
SingaporeTropicalH6614986640060.0096759086111445
Sint MaartenNon-tropicalH37929134490.35458356402753
SlovakiaNon-tropicalH436897828882500.66108137875723
SloveniaNon-tropicalH165719110902610.65789700764728
Solomon IslandsTropicalLM4963113404830.68602751097598
SomaliaTropicalL119428341816010.015205854824743
South AfricaNon-tropicalUM5167692393925740.18175567457838link
South Georgia and the South Sandwich IslandsNon-tropicalNA000
South KoreaNon-tropicalH4712129257887550.12284796859984link
South SudanTropicalL1278625718003780.14080571038108link
SpainNon-tropicalH43022587105116160.24432784574298link
Spratly islandsNon-tropicalNA000
Sri LankaTropicalLM25409980111978710.440687910813link
SudanTropicalLM3997229326986.7496753313601E-5
SurinameTropicalUM6853342667530.38923065249937link
Svalbard and Jan MayenNon-tropicalNA13200
SwazilandNon-tropicalLM14673508349570.56902375029816
SwedenNon-tropicalH550476241614600.7559745543949link
SwitzerlandNon-tropicalH652879336066030.55241497164943
SyriaNon-tropicalLM2055590911690620.056872308590197link
TaiwanNon-tropicalH2526334333757720.13362332926406link
TajikistanNon-tropicalL73668843126650.042441960535825
TanzaniaTropicalL55848660154827430.27722675888732link
ThailandTropicalUM78550086261106680.3324078855878link
TogoTropicalL82491656742540.081736030252759
TokelauTropicalNA69500
TongaTropicalUM9359000
Trinidad and TobagoTropicalH14354195103280.35552545981348
TunisiaNon-tropicalUM104511579061090.086699396057298
TurkeyNon-tropicalUM74355137164125700.22073216003892link
TurkmenistanNon-tropicalUM4727438437440.0092532149549079
Turks and Caicos IslandsTropicalH43101187330.4346302870003
TuvaluTropicalUM552300
UgandaTropicalL41856335187483560.44792158701903link
UkraineNon-tropicalLM35607976165583740.46501868008448link
United Arab EmiratesTropicalH574723500
United KingdomNon-tropicalH46105500180504650.39150350825823link
United StatesNon-tropicalH2988280611691781660.56613882054403link
United States Minor Outlying IslandsTropicalNA4000
UruguayNon-tropicalH32769299571840.29209787578553
UzbekistanNon-tropicalLM2619532114638020.055880284879884link
VanuatuTropicalLM2029451801870.88786124319397
Vatican CityNon-tropicalNA83600
VenezuelaTropicalUM3337112068578640.20550296184246link
VietnamTropicalLM105716885254100320.24035925765312link
Virgin Islands, U.S.TropicalH0740170
Wallis and FutunaTropicalNA1174400
Western SaharaTropicalLM63093600
YemenTropicalLM2866545500
ZambiaTropicalLM1612128230322620.18809062455455link
ZimbabweTropicalL1481149310895320.073559903785527

REFERENCES

  • Byron, Neil, and Michael Arnold. 1999. “What Futures for the People of the Tropical Forests?” World Development 27(5): 789–805.
  • Calibre Consultants. 2012. Numbers of Forest Dependent People: A Feasibility Study. Reading: Calibre Consultants and the Statistical Services Centre (SSC), University of Reading.
  • Hansen, Matthew C et al. 2013. “High-Resolution Global Maps of 21st-Century Forest Cover Change.” Science 342(6160): 850–53.
  • Landscan. 2012. “LandScan 2012: High Resolution Global Population Data Set.”
  • Newton, Peter, Daniel C. D.C. Miller, M.A.A. Mugabi Augustine Ateenyi Byenkya, and Arun Agrawal. 2016. “Who Are Forest-Dependent People? A Taxo Nomy to Aid Livelihood and Land Use Decision-Making in Forested Regions.” Land Use Policy 57: 388–95. OECD. 2012. “Redefining ‘Urban’: A New Way to Measure Metropolitan Areas.” OECD Publishing (September): 1–9.
  • http://www.oecd.org/regional/redefiningurbananewwaytomeasuremetropolitanareas.htm (April 29, 2018).
  • Usery, Lynn E., and Jeong Chang Seong. 2001. “All Equal-Area Map Projections Are Created Equal, but Some Are More Equal than Others.” Cartography and Geographic Information Science 28(3): 183–94. World Bank. 2002. A Revised Forest Strategy for the World Bank Group_31 October 2002. Washington, D.C.: World Bank.